
ACIDroid: A Practical App Cache Integrity
Protection System on Android Runtime

Abstract—To improve the execution performance of applica-
tions, Android introduced a new optimization technique using app
cache files. However, this new feature also brings a new security
concern called “app cache tampering attack” that can eventually
change the behavior of installed applications by modifying the
executable codes in their app cache files. We address this issue
with ACIDroid, an efficient app cache integrity protection solution
on Android, which relies on the selective transformation of the
original DEX codes into the optimized DEX codes.

To show the feasibility of ACIDroid, we performed app cache
tampering attacks on 14 popular Android apps and tried to
detect the changes in app cache files using ACIDroid. With the
modified app cache files, ACIDroid was able to correctly detect
the (intentional) changes while having an acceptable execution
time overhead less than 5% of the total execution time.

I. INTRODUCTION

Since Android 4.4 (KitKat), Google introduced an opti-
mization technique that uses app cache—when applications are
installed, their executable codes are compiled into optimized
executable codes and stored in app cache files to improve
the performance of the installed apps (e.g., speeding up the
execution) [1]. However, this optimization technique also raises
a security concern about the integrity of app cache files [2].

In practice, some sensitive Android apps (e.g., banking
and game apps) have a self-defense mechanism to check the
integrity of apps by themselves [3]—such apps typically verify
the validity of its Android application package (APK) file with
its signature while there is no sufficient security mechanism to
protect the integrity of app cache files. Therefore, sophisticated
attackers would devise a new attack to modify app cache files
instead of the original APK file. Even though the Android
framework uses a checksum-based integrity check to protect
app cache files, we found that such checks can effectively be
bypassed via the modification of checksum of the target cache
file. We call this type of attack app cache tampering attack
because executable codes in app cache files can maliciously
be modified to change the program’s control flow and data.

Recently, Wan et al. [2] suggested a defense mechanism
with the precomputed hash values of all possible optimized
Dalvik EXecutable (DEX) codes in order to check the integrity
of the optimized DEX codes that would be appeared in the app
cache files. However, it is quite challenging to precompute all
possible hash values for optimized DEX codes and efficiently

store them in the app because machine-specific DEX codes in
the app cache files may vary with Android OS version and
compile-filter option.

To provide the integrity of the optimized DEX codes in
app cache files with minimum storage burden, we present
“ACIDroid” (App Cache Integrity on Android), which is a
highly effective cache integrity protection system that relies
on the selective transformation of the original DEX codes into
the optimized DEX codes. We found that there are general
rules for converting original DEX codes into the optimized
DEX codes in app cache files even with variation in Android
OS version and compile-filter option. ACIDroid applies
those rules to detect the modification of the optimized DEX
codes (that we are particularly interested in) in app cache files.

Our key contributions are summarized below:

• Design of a practical app cache integrity protection
system on Android runtime, which uses 18 converting
rules to optimized DEX codes, demonstrating that
ACIDroid requires significantly less storage overhead
compared with Wan et al.’s approach [2] using the
database of app cache file signatures.

• Evaluation of ACIDroid’s performance against app
cache tampering attacks on 14 real-world Android
apps, demonstrating that ACIDroid can accurately
check the integrity of optimized DEX files in app
cache files while having an acceptable execution time
overhead less than 5% of the total execution time.

The rest of this paper is organized as follows. In Section II,
we provide some background information about Android
runtime (ART) execution environment and app cache files.
Section III describes how app cache tampering attacks are im-
plemented, and Section IV presents the overview of ACIDroid
against app cache tampering attacks. Section V presents the
evaluation results. We discuss how ACIDroid can be deployed
in real-world apps and its limitations in Section VI. Our
conclusions and further work are in Section VII.

II. BACKGROUND

A. Android runtime (ART)

Android is an open-source project for mobile-phone op-
erating systems. While Android is a Linux-based system,
the applications for Android are usually implemented using
Java and compiled to specific bytecode known as Dalvik
EXecutable (DEX). During runtime, an application can be
executed in either Dalvik or ART virtual machine environment
depending on Android OS version.

Dalvik Environment Dalvik virtual machine is a concept to
execute the application on Android versions later than 2.2. The

Workshop on Binary Analysis Research (BAR) 2019
24 February 2019, San Diego, CA, USA
ISBN 1-891562-58-4
https://dx.doi.org/10.14722/bar.2019.23xxx
www.ndss-symposium.org



Dalvik Just In Time (JIT) compiler dynamically translates parts
of the Dalvik bytecode into machine code known as native
code each time the app is run [4].

Some parts, which are not executed, are not compiled at
all. Therefore, JIT compilation method has advantages of using
less memory and shortening compilation time [5].

ART Environment ART virtual machine is an application
runtime environment used on Android versions later than 4.4
(known as KitKat). It replaced Dalvik and also introduced
AOT (Ahead Of Time) compiler which compiles the entire
application’s bytecode into machine code at the time of in-
stallation [6]. In other words, the entire DEX bytecode is
compiled into executable machine code. In this way, ART
improves overall runtime efficiency. The code compiled by
AOT compiler in ART is optimized and stored in the cache
files to improve performance. After compiling an application,
the files generated by AOT compiler have the extensions of
.art, .oat, .odex and .vdex. Moreover, AOT compiler
uses the dex2oat tool to convert the original DEX stored in
the APK file to optimized DEX which is stored in cache files
in turn. Furthermore, .odex and .vdex include optimized
DEX generated from original DEX in APK. The files which
are modified to cache files after this optimization process are
known as .odex and .vdex. These files can be directly
executed to improve performance when the application is run.

ART also uses checksum to determine whether the cache
files have been tampered. If it concludes that the cache files
have not been tampered, ART directly executes the cache files
which include optimized DEX. On the other hand, if ART
determines that any of the cache files has been modified, the
ART calls DEX in the original APK file. AOT compilation has
advantages of being able to execute with high performance,
shortening startup time and expanding battery lifespan [7].
However, it has still been a problem that the compilation time
could be burdened and the internal storage could be lacked [8].

The improvement of hardware specification made it possi-
ble to combine JIT compilation system with AOT compilation
system (Dalvik and ART). Recent smart-phone has large
storage, and as a result, the ART system does not give the
burden to device anymore. The burden of the storage space
is eased thanks to the improvement of hardware specification.
The AOT compilation method has benefits of improving startup
and runtime performance.

B. App cache files

After installing an application, a variety of files which have
the file extensions .art, .oat, and .odex are generated.
The cache file having .vdex extension is also generated on
Android versions later than 8. The cache files which end with
.odex and .vdex have an OAT file format. If the cache
file has not been tampered with, the ART will execute the
application’s cache file directly. The cache file which is directly
run varies depending on the version of Android OS. OAT files
are generated by a dex2oat or a dexopt tool which are included
in Android OS. The dex2oat tool keeps the compatibility [9],
and the dexopt tool optimizes the original DEX bytecode by
pre-computing data, pruning empty methods and improving
virtual method calls [10].

Fig. 1. Example of OAT cache file structure on Android 8.

Among the OAT files, the files that end with .odex are
called cache files which are special Executable and Linkable
Format (ELF) files. Such cache files are depicted in Fig. 1. In
addition, the .odex file is sandboxed and securely protected in
the application folder (the application’s data folder1) [2]. When
the application is installed, Android checks if all of the secu-
rity parameters (e.g., checksum and code signing) are valid.
However, after the application’s installation, when the user
tries to run the application, ART only checks the checksum
value of .odex file’s header. ART compares the checksum
of .odex file against the checksum value of base.art file
or base.apk file. Therefore, if .odex file is changed in a
malicious manner, ART cannot prevent the modified .odex
file from being run [2].

III. APP CACHE TAMPERING ATTACK

Sabanal [11] introduced the app cache tampering attack
on Android ART runtime environment. To implement this
attack, an attacker needs to have a system privilege to disable
the attacked application sandbox. While this assumption may
seem rather strong, it is not uncommon in practice and should
be considered for app protection. There exist several survey
results showing that a large number of Android devices were
rooted by device owners for the purpose of getting rid of
unnecessary built-in apps or updating to the latest version
of Android. According to the official report from Google
in 2016 [12], about 5.6% of all Android users were using
rooted devices–either intentionally or due to security bugs.
Furthermore, the survey results in [13] showed that about 7%
of all respondents were using rooted Android devices.

To implement app cache tampering attacks for experiments,
we modified the OAT files complied from the base APK file by
the AOT compiler. Fig. 2 shows an overview of the app cache
tampering attack on ART. The app cache tampering attack can
be launched in the following steps:

1) We install the target original APK files on the device
and automatically generate the OAT cache files using

1/data/app/[APK package]-[random hash]/oat/[instruction sets]/

2



Fig. 2. Overview of app cache tampering attack on ART.

Fig. 3. Example of the injected smali code.

the dex2oat and dexopt programs. In this step, if
Android version is lower than or equal to 7, the
OAT cache files are generated as base.odex file. If
Android version is equal to 8, the OAT cache files are
generated as base.odex and base.vdex files.

2) We extract the generated OAT files from the device.
Since this step is solely for making modification of
the cache file easy, it is not necessary to extract the
OAT files. If the OAT files can be tampered directly,
this step can be skipped.

3) We analyze the extracted OAT cache files, modify
the control flow of application and inject some ma-
licious codes we want to be executed. Further, the
modified OAT files can be generated using an easy
method since we can generate the modified OAT files
from the modified APK file. For instance, we can
decompile the original APK file using the open source
decompilation tool such as apktool [14], modify the
existing smali code and inject malicious smali code
such as the one shown in Fig. 3. We can then obtain
the modified OAT file from the device which will be
installed in the modified APK file. This is the easy
method which can be used to obtain the OAT files
that modify the control flow of the application.

4) We patch the checksum field of the modified OAT
file with the checksum of the original APK file. Note
that the checksum value is related to the original APK
file, not to the OAT file. If the checksum of the OAT
file is not equal to that of the original APK file, the
execution request is ignored. In addition, ART will
re-compile the original APK file and will overwrite
the existing OAT file.

5) We insert the OAT file into the target device. We
confirmed that the application successfully operated
under the flow we induced, not the original.

TABLE I. LIST OF THE APPLICATIONS USED IN OUR EXPERIMENTS.

Category Application name

Finance Paypal
Bank of America

Productivity

Outlook
1Password
Dropbox
Skydrive

Business Azure Authenticator
Blizzard Authenticator

Medical TexasHealthMyChart
Tools Google Authenticator

Communication Facebook messenger
Social Pinterest

Music & Audio Amazon Alexa
Travel & Local Booking

We collected Android applications which can be abused to
steal personal information and operated maliciously. Table I
shows the collected 14 applications from 9 different categories.
These applications were modified using the process mentioned
above.

IV. ACIDROID

In this Section, we describe the design and implemen-
tation of ACIDroid, our proposed verification system. In
Section IV-A, we introduce the process of the verification
system. In Section IV-B, we explain the converting rules for
optimizing instruction and illustrate the experiments and proof
for constructing the converting rules.

A. Design of ACIDroid

We suggest a new method to verify the integrity of OAT
cache files on Android ART framework as shown in Fig. 4.
We assume that the integrity of the APK file is guaranteed
because the APK file can be protected by several methods [3],
[15]–[17]. The verification processes are as follows:

1) ACIDroid extracts DEX file A from base.apk and
DEX file A′ from OAT files, which contain the
optimized DEX. The optimized DEX A′ is included
in base.odex file on Android versions 5 [18] to
7, and it is included in base.vdex on Android
versions higher than 8.

2) ACIDroid compares the sizes of DEX files (A and A′)
extracted from base.apk and OAT files. If the sizes
are not the same, the execution request is denied.

3) If the sizes are the same, ACIDroid compares the
names of the classes and methods. If any of the names
is different, the execution request is denied.

4) If all the names are the same, ACIDroid identi-
fies mismatched codes. ACIDroid converts the mis-
matched DEX codes in A to the optimized DEX
codes using converting rules, and compares them
with codes in the optimized DEX file A′ from
base.odex. At this step, we provide two options
(full inspection and partial inspection) for developer.
In full inspection, the whole DEX files are compared.
This kind of inspection has a 100% detection rate and
a 0% error rate theoretically and also requires a lot of

3



Fig. 4. High-level design of ACIDroid, showing the key stages involved in app cache tampering attack detection.

time and power of the device. In partial inspection,
only some portion of DEX files such as specific
classes or methods are compared. As a result, when
this kind of inspection is used, modified DEX might
possibly be undetected. However, partial inspection
can still detect modified classes or methods and also
protect the parts the user wants effectively.

5) ACIDroid reports the detailed inspection. The inspec-
tion report includes the result whether the app cache
files have been tampered or not and also the position
specifying where in the app cache files has been
modified.

We implemented ACIDroid in native code using LIEF
library2. ACIDroid extracts DEX files from the OAT cache
files and compares them with the DEX files extracted from
the original APK file. Bytecode comparisons are performed for
each method via lief.DEX.Method.bytecode provided
by the LIEF library. If some bytecodes of the OAT cache files
are mismatched with the bytecodes of the original APK file,
ACIDroid uses the converting rules to check if the mismatch
occurred by the effect of optimization. If the mismatch was not
caused by the optimization, ACIDroid decides the mismatch
has been caused by the app cache tampering attack.

B. Instruction converting rules

To improve the performance such as speed, space of an
application and so on, several optimization methods have been
considered. Among a variety of improvement methods, for
the speed optimization, ART adopts the method that changes
the instruction of DEX files to the optimized instruction. The
method does not change all instructions but rather optimizes
only some of the instructions. The optimizable instruction list
is different depending on the Android version, and this is
depicted in Table II.

2https://github.com/lief-project/LIEF

DEX code that can be optimized varies depending on the
Android version and the compile-filter of dex2oat tool.
For example, on Android 7, there are 12 compiler-filter
options. If interpret-only option is enabled, ART opti-
mizes DEX files only if the interpreter performance would be
improved, and the speed option does AOT compilation for all
DEX files to increase application performance especially speed
on Android 7. In addition, dex2oat tool provides 10 compiler
filters which include four officially provided options [19] and
additional options provided on Android 8.

The converting rules can be obtained from the official
website [20] or the source code of AOSP [21]. The converting
rules according to the Android version are shown in Table II.
We performed experiments to verify the consistency with the
converting rules identified from the source codes of AOSP. We
compared the DEX files of the original APK file with the DEX
files of the OAT cache files according to Android versions
(5 to 8) using 14 applications which are listed in Table I.
As a result, we could confirm that the optimized opcodes of
Android 5 were different from the optimized opcodes of the
other Android versions. This could also be confirmed from the
source code of AOSP.

V. EVALUATION

A. Experiment setup

To test the verification system we proposed, we collected
14 applications from 9 categories listed in Table I. The appli-
cations are sensitive to the modification of the control flow,
and they have the integrity verification system themselves.
However, the system only verifies the integrity of the APK file.
As shown in Section III, to confirm the app cache tampering
attack, we tampered the cache files of 14 applications and
confirmed that the modified cache files were working.

To check the device dependency and evaluate the perfor-
mance of ACIDroid, we used 4 physical devices (Pixel 2,

4

https://github.com/lief-project/LIEF


TABLE II. CONVERTING RULES FOR GENERATING OPCODES IN OPTIMIZED DEX FILES. DIFFERENT RULES CAN BE APPLIED FOR EACH ANDROID
VERSION.

Opcode (hex) Opcode name Android 5 Android 6, 7, 8
Optimized opcode Optimized opcode name Optimized opcode Optimized opcode name

0E return-void 73 return-void-no-barrier 73 return-void-no-barrier
1F check-cast 00 nop 00 nop
52 iget E3 iget-quick E3 iget-quick
53 iget-wide E4 iget-wide-quick E4 iget-wide-quick
54 iget-object E5 iget-object-quick E5 iget-object-quick
59 iput

E6 iput-quick

E6 iput-quick
5C iput-boolean EB iput-boolean-quick
5D iput-byte EC iput-byte-quick
5E iput-char ED iput-char-quick
5F iput-short EE iput-short-quick
5A iput-wide E7 iput-wide-quick E7 iput-wide-quick
5B iput-object E8 iput-object-quick E8 iput-object-quick
6E invoke-virtual E9 invoke-virtual-quick E9 invoke-virtual-quick
74 invoke-virtual/range EA invoke-virtual-quick/range EA invoke-virtual-quick/range
55 iget-boolean - - EF iget-boolean-quick
56 iget-byte - - F0 iget-byte-quick
57 iget-char - - F1 iget-char-quick
58 iget-short - - F2 iget-short-quick

Galaxy S9, Nexus 5x and Galaxy S5) and 8 images which
were publicly use-able images (called AOSP). We tested 12
environments on 3 different Android versions. That is, we
tested 2 devices (Pixel 2 and Galaxy S9) and 1 AOSP image
(x86 32) on Android 8. We tested 1 device (Nexus 5x) and
2 AOSP images (x86 32, x86 64) on Android 7, 1 device
(Galaxy S5) and 2 AOSP images (x86 32, x86 64) on Android
6, and 3 AOSP images (x86 32 and x86 64 on Android 5.1
and x86 32 on Android 5.0). All AOSP images were installed
and executed on the computer which had Intel core i7, 16 GB
memory and GeForce GTX 1080 graphics card.

B. Experiment results

We evaluate our integrity verification system on app cache
files (ACIDroid) in terms of overhead time ratio which can af-
fect the battery consumption and the application performance,
and in terms of effectiveness how exactly the system detects
the modified classes or methods. We evaluated 3 categories:
time overhead, storage overhead and detection ratio.

Time overhead To measure the time overhead ratio, we
measure the time Tverify the system spends on verification
and the time Tready it takes for the application to reach the
ready state from the start state. ACIDroid is developed in native
code, so we can measure the exact time by calculating the time
difference between the start point of code and the end point
of code, and printing out through the logcat.

For comparing the overhead time when ACIDroid is work-
ing against the application execution time when ACIDroid is
not working, we developed an application which executes the
target application. We assumed that the start time of the target
application is the time printed before ACIDroid tries to execute
the target application. On the other hand, the end time of
the target application was estimated by using the logs of the
logcat. We collected and analyzed logs from various different
applications. As a result, we could figure out some common
features existed in all the recorded logs, i.e, the common
features existed in the recorded logs of every application. We
conjecture that the repeated common features are the system

TABLE III. EXECUTION TIME OVERHEAD OF ACIDROID IN
APPLICATIONS FOR EACH ANDROID VERSION.

App name # of DEX Android 8 Android 7 Android 6 Android 5
Paypal 2 1.45 % 3.54 % 5.74 % 3.03 %
Bank of America 2 1.15 % 3.18 % 5.12 % 3.14 %
Outlook 8 1.09 % 2.58 % 4.25 % 4.16 %
1Password 1 0.88 % 2.25 % 3.18 % 3.33 %
Dropbox 1 0.76 % 2.18 % 3.35 % 2.76 %
Skydrive 3 1.05 % 3.66 % 7.78 % -
Azure Authenticator 9 1.07 % 2.60 % 3.72 % 0.82 %
Blizzard Authenticator 2 0.85 % 1.87 % 2.82 % 2.76 %
Google Authenticator 1 0.44 % 1.20 % 1.24 % 0.71 %
TexasHealthMyChart 2 0.76 % 1.78 % 2.38 % 2.11 %
Facebook messenger 5 0.19 % 2.77 % 12.06 % -
Pinterest 3 0.90 % 2.53 % 6.65 % -
Amazon Alexa 3 0.83 % 2.03 % 3.37 % 2.76 %
Booking 4 0.84 % 2.07 % 3.99 % 2.79 %
Overall average (%) 3.29 0.88 % 2.45 % 4.69 % 2.58 %
Overall average (ms) 3.29 8.76 ms 24.45 ms 46.89 ms 25.81 ms

logs to help maintain the signal that the application receives
from the user. Overall, the overhead time can be calculated as
shown in Equation (1).

Toverhead =
Tverify

Tverify + Tready
(1)

To compare the time overhead of ACIDroid against the
time overhead of Wan et al. [2]’s verification system, we
implemented the integrity verification system using hash value
in native code just like we implemented ACIDroid. The
verification system using hash extracts the DEX files from the
app cache files and hashes the DEX files using SHA256. The
system compares the hashed value with the stored hash value
when the app cache files are installed. The time overhead of the
verification system using hash can also be calculated according
to the Equation (1), and the time overhead of 12.67% was
achieved when the verification system using hash was deployed
on Android 8. On the other hand, ACIDroid achieved the time
overhead of 0.88% as shown in Table III. This result shows
that ACIDroid is faster than the verification system using hash
by about 14 times.

To test how much the time overhead varies depending on
which Android version ACIDroid is deployed, we measured

5



the time overhead individually according to the applications
and the Android versions as shown in Table III. On Android
8, the time overhead incurred was less than that of other
versions. This is because the devices which were used during
the experiment on Android 8 environment were the most
recent releases, and they have the best specification compared
to other devices. In addition, Android 8 has more improved
optimization. As shown in Table III, when older version of
Android was used, it incurred a lot more time overhead com-
pared to the case when Android 8 was used. This is because
the devices used in Android 6 and 7 experiments have the
lower specification compared to the devices used in Android
8 experiment. Unlike the cases when other Android versions
were used, the performance has increased when Android 5 was
used since the time overhead decreased to 2.58%. In this case,
the experiment environments only involved AOSP images, not
the physical devices. As a result, even though an initial version
of ART framework is used, the time overhead incurred on
Android 5 can be less than the time overhead incurred on
Android 6.

Storage overhead Wan et al. [2] proposed a mechanism to
protect app cache by pre-computing all possible optimized
DEX hash values. However, their approach enforces the system
to store all possible hash values of optimized DEX in secure
storage. According to their proposed mechanism, the storage
size required to store the hash values can be calculated as
shown in Equation (2), Here, Boverhead is the increase in size
of bytes, Ninst is the number of instruction-set such
as Mips, Mips64, x86, x86 64, Arm, Arm64, Thumb2 which
varies depending on the Android version, Ncompile is the num-
ber of compile-filter such as assume-verified,
everything, speed-profile which varies depending
on the Android version supported by dex2oat, and NDEX

is the number of DEX files in the application.

Boverhead = Ninst ×Ncompile × (1 + 4×NDEX) (2)

For example, suppose that the Booking application has eight
DEX files, 10 compile-filter options exist in An-
droid 8 and the mobile device has seven instruction sets. Then,
according to the Equation (2), the storage overhead of Booking
app comes out to be 2,310 bytes on Android 8. The storage
overhead will be increased if the booking application has to
be used on other versions of Android. ACIDroid, on the other
hand, solves this storage overhead problem.

Detection ratio ACIDroid can decide the target methods,
classes or DEX files. In the experiment we conducted, the
inspected part was the first DEX file. That is, ACIDroid
checked the modification of the first DEX file only and then
decided whether the app cache files have been tampered or
not. We tested ACIDroid with 14 tampered applications and
14 original applications. As a result, ACIDroid achieved 100%
detection rate.

VI. DISCUSSION

A. Possible deployments

ACIDroid can be incorporated into the existing APK in-
tegrity verification procedure. Fig. 5 shows a possible deploy-
ment of the app cache file integrity verification process using

Fig. 5. App cache integrity verification process with an external server.

Fig. 6. App cache integrity verification process without an external server.

an external server [3]. To check the integrity of app cache files
in an app, the app reports its own app information and the hash
value of the optimized DEX to an external verification server.
The server then obtains the original APK file with the received
app information and checks the validity of the received hash
value of the optimized DEX codes using ACIDroid. The server
responds with a success message or secret key if the hash
value is valid. Here, we assume that the secret key is needed
to continue the execution of the app (e.g., the app’s database
files are encrypted with the secret key). Also, the secret key can
be dynamically updated over time to prevent replay attacks. If
the app successfully receives the secret key, the app normally
runs with the key. Otherwise, the app forcibly terminates the
app itself. Naturally, the role of such an external server can be
alternatively performed by a trustworthy process running on
either Android’s Linux kernel or TrustZone.

Even without an external verification server, ACIDroid can
also verify the integrity of the app cache files through a self-
defense mechanism as shown in Fig. 6. In order to check the
integrity of DEX codes in app cache files, the integrity of base
APK file should be first protected. Here, we assume that the in-
tegrity of base APK file can be effectively checked by signing
the APK file with a trusted developer’s signing key. If the base
APK file is valid, ACIDroid extracts DEX codes from the base
APK file and compares them with the optimized DEX codes
in OAT cache files to identify mismatched parts between the
original DEX codes and the optimized DEX codes. For those
mismatched codes, ACIDroid checks whether the optimized
DEX codes are normally generated using the converting rules
shown in Table II. If the app successfully passes this self-

6



integrity check, the app normally runs continuously. Otherwise,
the app forcibly terminates the app itself.

B. Limitations

We note that ACIDroid checks the code regions of opcodes
and register fields rather than the region of parameter fields.
We found that the parameter field values related to vtable
are unique to each device. Therefore, it is not possible to
use the optimization code generation rules in order to check
the validity of parameter field values unlike opcodes and
register fields. Consequently, our ACIDroid implementation
can certainly result in a security hole that will be exploited
by sophisticated attackers who can develop code modification
attacks with the changes in vtable fields similar to virtual
function table hijacking attacks in C++ language. However, we
argue that it is very challenging to change the control flow of
Android apps by only modifying the vtable values because
there may be a small chance of generating such an exploit
code with the existing methods only in the view of attacker.
We will conduct more experiments to analyze the possibility
of such attacks for further work.

The security of ACIDroid is somewhat limited when
ACIDroid runs on the app itself. Without a platform-level
secure execution environment, all self-integrity check mecha-
nisms can be practically bypassed by reverse engineering and
app repackaging [22] because the codes for the integrity check
in apps can be modified by attackers. Thus, a platform-level
support for ACIDroid is ultimately required.

VII. CONCLUSION

Android introduced the app cache mechanism to boost the
performance of apps running on ART environment. However,
this mechanism brings a new security concern about the
protection of app cache files. To address this problem, we
propose ACIDroid, which is a practical app cache integrity
protection system for checking the validity of mismatched
parts between the original DEX codes and the DEX codes
in app cache files. Compared with the existing method [2] that
uses a large size of app cache file signatures, ACIDroid can
efficiently detect the modification of the optimized DEX codes
(that we are particularly interested in) in app cache files.

To show the feasibility of ACIDroid, we implemented a
prototype and evaluated ACIDroid’s performance with several
Android versions (5 to 8). Our experiments, conducted with
14 real-world Android apps, showed that ACIDroid accurately
detected the modification of the optimized DEX codes with
a small overhead (e.g., 8.76ms on average for Android 8) in
execution time.

As part of future work, we plan to make ACIDroid provide
more fine-grained and flexible inspection for a particular class
or method to be examined. Our current implementation can
only check the modification of the optimized DEX codes at
the file level. We also intend to conduct real-world experiments
through the deployment of ACIDroid in the latest Android
devices, and analyze its performance under numerous varying
conditions in a real-world setting.

REFERENCES

[1] R. Yadav and R. S. Bhadoria, “Performance analysis for Android run-
time environment,” in Proceedings of the 5th International conference
on Communication Systems and Network Technologies. IEEE, 2015.

[2] J. Wan, M. Zulkernine, P. Eisen, and C. Liem, “Defending Application
Cache Integrity of Android Runtime,” in Proceedings of the 13th Inter-
national Conference on Information Security Practice and Experience.
Springer, 2017.

[3] T. Kim, H. Ha, S. Choi, J. Jung, and B.-G. Chun, “Breaking Ad-
hoc Runtime Integrity Protection Mechanisms in Android Financial
Apps,” in Proceedings of the 12th Asia Conference on Computer and
Communications Security. ACM, 2017.

[4] J. Hildenbrand, “Android A to Z: What is the JIT?” https://www.
androidcentral.com/android-z-what-jit, 2012.

[5] H.-S. Oh, B.-J. Kim, H.-K. Choi, and S.-M. Moon, “Evaluation of An-
droid Dalvik virtual machine,” in Proceedings of the 10th International
Workshop on Java Technologies for Real-time and Embedded Systems.
ACM, 2012.

[6] “ART and Dalvik,” https://source.android.com/devices/tech/dalvik,
2017.

[7] M. Backes, S. Bugiel, O. Schranz, P. von Styp-Rekowsky, and S. Weis-
gerber, “ARTist: The Android runtime instrumentation and security
toolkit,” in Proceedings of the 2nd European Symposium on Security
and Privacy. IEEE, 2017.

[8] A. Sinhal, “Closer Look At Android Run-
time: DVM vs ART,” https://android.jlelse.eu/
closer-look-at-android-runtime-dvm-vs-art-1dc5240c3924, 2017.

[9] V. Costamagna and C. Zheng, “ARTDroid: A Virtual-Method Hooking
Framework on Android ART Runtime.” in Proceedings of the 8th
International Symposium on Engineering Secure Software and Systems.
ACM, 2016.

[10] M. Sun, T. Wei, and J. Lui, “TaintART: A Practical Multi-level
Information-Flow Tracking System for Android RunTime,” in Proceed-
ings of the 23rd SIGSAC Conference on Computer and Communications
Security. ACM, 2016.

[11] P. Sabanal, “Hiding behind ART,” Online: https://www. blackhat.
com/docs/asia-15/materials/asia-15-Sabanal-Hiding-Behind-ART-wp.
pdf, 2015.

[12] A. Ludwig and M. Mille, “Diverse protections for a diverse
ecosystem: Android security 2016 year in review,” https://goo.gl/6o4tBf,
2017. [Online]. Available: https://source.android.com/security/reports/
Google Android Security 2016 Report Final.pdf

[13] F. Howarth, “Is rooting your phone safe? the security
risks of rooting devices,” https://goo.gl/axbkX9, October
2015. [Online]. Available: https://insights.samsung.com/2015/10/12/
is-rooting-your-phone-safe-the-security-risks-of-rooting-devices

[14] T. Connor, “Apktool,” https://ibotpeaches.github.io/Apktool/, 2018.
[15] Y. Piao, J.-H. Jung, and J. H. Yi, “Server-based code obfuscation scheme

for APK tamper detection,” Security and Communication Networks,
vol. 9, no. 6, pp. 457–467, 2016.

[16] E.-R. Latifa and E. K. My Ahmed, “Android: Deep look into Dalvik
VM,” in Proceedings of the 5th World Congress on Information and
Communication Technologies. IEEE, 2015.

[17] S. Wessel, F. Stumpf, I. Herdt, and C. Eckert, “Improving mobile device
security with operating system-level virtualization,” in Proceedings of
the 28th IFIP International Information Security Conference. Springer,
2013.

[18] Y. Zhang, X. Luo, and H. Yin, “Dexhunter: toward extracting hidden
code from packed android applications,” in Proceedings of the 20th
European Symposium on Research in Computer Security. IEEE, 2015.

[19] “Configuring ART,” https://source.android.com/devices/tech/dalvik/
configure, 2018.

[20] “Dalvik Executable instruction formats,” https://source.android.com/
devices/tech/dalvik/instruction-formats, 2018.

[21] “Git repositories on android,” https://android.googlesource.com, 2018.
[22] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization

and evolution,” in Proceedings of the 33rd Symposium on Security and
Privacy. IEEE, 2012.

7

https://www.androidcentral.com/android-z-what-jit
https://www.androidcentral.com/android-z-what-jit
https://source.android.com/devices/tech/dalvik
https://android.jlelse.eu/closer-look-at-android-runtime-dvm-vs-art-1dc5240c3924
https://android.jlelse.eu/closer-look-at-android-runtime-dvm-vs-art-1dc5240c3924
https://goo.gl/6o4tBf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://goo.gl/axbkX9
https://insights.samsung.com/2015/10/12/is-rooting-your-phone-safe-the-security-risks-of-rooting-devices
https://insights.samsung.com/2015/10/12/is-rooting-your-phone-safe-the-security-risks-of-rooting-devices
https://ibotpeaches.github.io/Apktool/
 https://source.android.com/devices/tech/dalvik/configure
 https://source.android.com/devices/tech/dalvik/configure
https://source.android.com/devices/tech/dalvik/instruction-formats
https://source.android.com/devices/tech/dalvik/instruction-formats
https://android.googlesource.com

	Introduction
	Background
	Android runtime (ART)
	App cache files

	App cache tampering attack
	ACIDroid
	Design of ACIDroid
	Instruction converting rules

	Evaluation
	Experiment setup
	Experiment results

	Discussion
	Possible deployments
	Limitations

	Conclusion
	References

